Thursday, September 24, 2009

ADP (Amar durga Puja)

What is ADP – Amar Durga Puja?
As we all know that Durga Puja is one of the most awaited festival in West Bengal but because of it’s geographical restriction people in the other part of the world can only read about it or view photos only once the event is over – it’s like watching the highlights of the World Cup Finals. We, at FOURDY WLOG, decided to take Durga Puja to the whole world. After a lot of thinking the only way we could do it was through the most powerful medium of today, the internet. This is when we decided to create ADP – www.amardurgapuja.com. ADP would be like a platform for the users to share their thoughts, videos, photo and more about Durga Puja.
The bigger plan was to create a live online streaming video for EACH location in Kolkata. The user who comes to the website would be able to choose the location for which he wants to view the video for and the live video plays. Many may ask: Almost all media channels and radio stations cover the event, how are they different? Well, the primary difference would be that the user gets to choose the location himself and can view each moment of any location rather than watching the puja for only the location where the media is present at that point of time.
Is it happening for Durga Puja 2009?
Unfortunately, No, we will not be rolling out this year due to the lack of sponsors and lack of time.
Then, why are we talking?
Well, because we are ready to make the first move this year. First Move: We will be organizing a photo submission competition this year.
I am excited, tell me more!
What we plan to do is create a website which would be available for the public at www.amardurgapuja.com. On the website, each user can upload photos of puja happening at various places in Kolkata. All the uploaded photos can be view by the general users visitng the website and will have following features:
Comment on the photo
Rate the photo
Search photos (by location)
What happens next?
Next, we plan to give away prizes to:
Best Rated Photo
Most Visited Photo
so Hurry Up and be a part of it

Saturday, September 5, 2009

Lung Cancer

Lung cancer is a disease of uncontrolled cell growth in tissues of the lung. This growth may lead to metastasis, which is the invasion of adjacent tissue and infiltration beyond the lungs. The vast majority of primary lung cancers are carcinomas of the lung, derived from epithelial cells. Lung cancer, the most common cause of cancer-related death in men and the second most common in women (after breast cancer),is responsible for 1.3 million deaths worldwide annually. The most common symptoms are shortness of breath, coughing (including coughing up blood), and weight loss.
The main types of lung cancer are small cell lung carcinoma and non-small cell lung carcinoma. This distinction is important, because the treatment varies; non-small cell lung carcinoma (NSCLC) is sometimes treated with surgery, while small cell lung carcinoma (SCLC) usually responds better to chemotherapy and radiation. The most common cause of lung cancer is long-term exposure to tobacco smoke. The occurrence of lung cancer in nonsmokers, who account for as many as 15% of cases , is often attributed to a combination of genetic factors, radon gas, asbestos, and air pollution, including secondhand smoke.
Lung cancer may be seen on chest radiograph and computed tomography (CT scan). The diagnosis is confirmed with a biopsy. This is usually performed via bronchoscopy or CT-guided biopsy. Treatment and prognosis depend upon the histological type of cancer, the stage (degree of spread), and the patient's performance status. Possible treatments include surgery, chemotherapy, and radiotherapy. With treatment, the five-year survival rate is 14%.

Signs and symptoms
Symptoms that suggest lung cancer include:
dyspnea (shortness of breath)
hemoptysis (coughing up blood)
chronic coughing or change in regular coughing pattern
wheezing
chest pain or pain in the abdomen
cachexia (weight loss), fatigue, and loss of appetite
dysphonia (hoarse voice)
clubbing of the fingernails (uncommon)
dysphagia (difficulty swallowing).
If the cancer grows in the airway, it may obstruct airflow, causing breathing difficulties. This can lead to accumulation of secretions behind the blockage, predisposing the patient to pneumonia. Many lung cancers have a rich blood supply. The surface of the cancer may be fragile, leading to bleeding from the cancer into the airway. This blood may subsequently be coughed up.
Depending on the type of tumor, so-called paraneoplastic phenomena may initially attract attention to the disease. In lung cancer, these phenomena may include Lambert-Eaton myasthenic syndrome (muscle weakness due to auto-antibodies), hypercalcemia, or syndrome of inappropriate antidiuretic hormone (SIADH). Tumors in the top (apex) of the lung, known as Pancoast tumors, may invade the local part of the sympathetic nervous system, leading to changed sweating patterns and eye muscle problems (a combination known as Horner's syndrome) as well as muscle weakness in the hands due to invasion of the brachial plexus.
Many of the symptoms of lung cancer (bone pain, fever, and weight loss) are nonspecific; in the elderly, these may be attributed to comorbid illness. In many patients, the cancer has already spread beyond the original site by the time they have symptoms and seek medical attention. Common sites of metastasis include the brain, bone, adrenal glands, contralateral (opposite) lung, liver, pericardium, and kidneys. About 10% of people with lung cancer do not have symptoms at diagnosis; these cancers are incidentally found on routine chest radiograph.

Causes
The main causes of lung cancer (and cancer in general) include carcinogens (such as those in tobacco smoke), ionizing radiation, and viral infection. This exposure causes cumulative changes to the DNA in the tissue lining the bronchi of the lungs (the bronchial epithelium). As more tissue becomes damaged, eventually a cancer develops.

Smoking, particularly of cigarettes, is by far the main contributor to lung cancer.
Across the developed world, almost 90% of lung cancer deaths are caused by smoking.In the United States, smoking is estimated to account for 87% of lung cancer cases (90% in men and 85% in women). Among male smokers, the lifetime risk of developing lung cancer is 17.2%; among female smokers, the risk is 11.6%. This risk is significantly lower in nonsmokers: 1.3% in men and 1.4% in women.Cigarette smoke contains over 60 known carcinogens,including radioisotopes from the radon decay sequence, nitrosamine, and benzopyrene. Additionally, nicotine appears to depress the immune response to malignant growths in exposed tissue.
The length of time a person smokes (as well as rate of smoking) increases the person's chance of developing lung cancer. If a person stops smoking, this chance steadily decreases as damage to the lungs is repaired and contaminant particles are gradually removed. In addition, there is evidence that lung cancer in never-smokers has a better prognosis than in smokers, and that patients who smoke at the time of diagnosis have shorter survival times than those who have quit.
Passive smoking—the inhalation of smoke from another's smoking—is a cause of lung cancer in nonsmokers. A passive smoker can be classified as someone living or working with a smoker as well. Studies from the U.S Europe the UK and Australia have consistently shown a significant increase in relative risk among those exposed to passive smoke. Recent investigation of sidestream smoke suggests that it is more dangerous than direct smoke inhalation.
Radon Gas
Radon is a colorless and odorless gas generated by the breakdown of radioactive radium, which in turn is the decay product of uranium, found in the Earth's crust. The radiation decay products ionize genetic material, causing mutations that sometimes turn cancerous. Radon exposure is the second major cause of lung cancer, after smoking. Radon gas levels vary by locality and the composition of the underlying soil and rocks. For example, in areas such as Cornwall in the UK (which has granite as substrata), radon gas is a major problem, and buildings have to be force-ventilated with fans to lower radon gas concentrations. The United States Environmental Protection Agency (EPA) estimates that one in 15 homes in the U.S. has radon levels above the recommended guideline of 4 picocuries per liter (pCi/L) (148 Bq/).Iowa has the highest average radon concentration in the United States; studies performed there have demonstrated a 50% increased lung cancer risk, with prolonged radon exposure above the EPA's action level of 4 pCi/L.
Asbestos
Asbestos can cause a variety of lung diseases, including lung cancer. There is a synergistic effect between tobacco smoking and asbestos in the formation of lung cancer. In the UK, asbestos accounts for 2–3% of male lung cancer deaths.Asbestos can also cause cancer of the pleura, called mesothelioma (which is different from lung cancer).
Viruses
Viruses are known to cause lung cancer in animals, and recent evidence suggests similar potential in humans. Implicated viruses include human papillomavirus, JC virus, simian virus 40 (SV40), BK virus, and cytomegalovirus. These viruses may affect the cell cycle and inhibit apoptosis, allowing uncontrolled cell division.
Pathogenesis
Main article: Carcinogenesis
Similar to many other cancers, lung cancer is initiated by activation of oncogenes or inactivation of tumor suppressor genes. Oncogenes are genes that are believed to make people more susceptible to cancer. Proto-oncogenes are believed to turn into oncogenes when exposed to particular carcinogens. Mutations in the K-ras proto-oncogene are responsible for 10–30% of lung adenocarcinomas. The epidermal growth factor receptor (EGFR) regulates cell proliferation, apoptosis, angiogenesis, and tumor invasion. Mutations and amplification of EGFR are common in non-small cell lung cancer and provide the basis for treatment with EGFR-inhibitors. Her2/neu is affected less frequently. Chromosomal damage can lead to loss of heterozygosity. This can cause inactivation of tumor suppressor genes. Damage to chromosomes 3p, 5q, 13q, and 17p are particularly common in small cell lung carcinoma. The p53 tumor suppressor gene, located on chromosome 17p, is affected in 60-75% of cases. Other genes that are often mutated or amplified are c-MET, NKX2-1, LKB1, PIK3CA, and BRAF.
Several genetic polymorphisms are associated with lung cancer. These include polymorphisms in genes coding for interleukin-1, cytochrome P450,apoptosis promoters such as caspase-8,and DNA repair molecules such as XRCC1. People with these polymorphisms are more likely to develop lung cancer after exposure to carcinogens.
A recent study suggested that the MDM2 309G allele is a low-penetrant risk factor for developing lung cancer in Asians.
History
Lung cancer was uncommon before the advent of cigarette smoking; it was not even recognized as a distinct disease until 1761. Different aspects of lung cancer were described further in 1810. Malignant lung tumors made up only 1% of all cancers seen at autopsy in 1878, but had risen to 10–15% by the early 1900s. Case reports in the medical literature numbered only 374 worldwide in 1912, but a review of autopsies showed that the incidence of lung cancer had increased from 0.3% in 1852 to 5.66% in 1952. In Germany in 1929, physician Fritz Lickint recognized the link between smoking and lung cancer, which led to an aggressive antismoking campaign. The British Doctors Study, published in the 1950s, was the first solid epidemiological evidence of the link between lung cancer and smoking. As a result, in 1964 the Surgeon General of the United States recommended that smokers should stop smoking.
The connection with radon gas was first recognized among miners in the Ore Mountains near Schneeberg, Saxony. Silver has been mined there since 1470, and these mines are rich in uranium, with its accompanying radium and radon gas. Miners developed a disproportionate amount of lung disease, eventually recognized as lung cancer in the 1870s. An estimated 75% of former miners died from lung cancer. Despite this discovery, mining continued into the 1950s, due to the USSR's demand for uranium.
The first successful pneumonectomy for lung cancer was performed in 1933. Palliative radiotherapy has been used since the 1940s. Radical radiotherapy, initially used in the 1950s, was an attempt to use larger radiation doses in patients with relatively early stage lung cancer but who were otherwise unfit for surgery. In 1997, continuous hyperfractionated accelerated radiotherapy (CHART) was seen as an improvement over conventional radical radiotherapy
With small cell lung carcinoma, initial attempts in the 1960s at surgical resection and radical radiotherapy were unsuccessful. In the 1970s, successful chemotherapy regimens were developed.

Treatment
Treatment for lung cancer depends on the cancer's specific cell type, how far it has spread, and the patient's performance status. Common treatments include surgery, chemotherapy, and radiation therapy.

Friday, September 4, 2009

A very warm welcome to all the visiters of my blog .

Hello everyone
I am Ujjwal Kr. Gupta of The Heritage School.
Currently I am in class 11 studying pure science.
Thats all so this is my new blog so i need time to post some useful information but before that i need to know tha what is blog.
So, thank you very much for visiting my bizzare blog .
and hope we meet again with some useful postings.
Till then take care
and stay away from my blog
:)